Fig. 3.1: Parameter space plot of Re_{L_x} and $(L_x/L_y)^2Re_{L_z}$ data from field study in Rupert Bay (Ingram & Chu 1987)
Fig. 3.2: Parameter space plot of Re_L and $(L/L_0)^2Re_L$: data from experimental study on vertical cylinder (Chen & Jirka 1995)

Fig. 3.3: Parameter space plot of Re_L and $(L/L_0)^2Re_L$: data from experimental study on conical island (Lloyd & Sansby 1997)
Fig. 3.4: Parameter space plot of Re_{L} and S: data from experimental study on vertical cylinder (Chen & Jurka 1995)
Fig. 3.5: Parameter space plot of S and $(L_d/L_o)^2Re_{L_d}$ data from field study in Rupert Bay (Ingram & Chu 1987)

Fig. 3.6: Parameter space plot of S and $(L_d/L_o)^2Re_{L_d}$ data from experimental study on vertical cylinder (Chen & Jirka 1995)
Fig. 4.2: Grid system used for computation
Fig. 4.3: Numerical error versus number of grid points
Fig. 4.4: Wake velocity deficit for an UB case. ($U=0.144\text{m/s}$, $H=0.017\text{m}$, $D=0.5\text{m}$, $c_f=0.0078$)
Fig. 5.1: Slallow near-wake pattern produced by cylinder viewed with vorticity contours: (a) Vortex street pattern ($S = 0.17$); (b) Unsteady bubble pattern ($S = 0.24$); (c) Steady bubble pattern ($S = 0.66$)
Fig. 5.6: Time and amplitude spectra of the velocity components at different spatial locations: $x_1=0.616D$, $y_1=0.135D$ and $x_2=1.691D$, $y_2=0.643D$, respectively (UB case, $S=0.49$)
Fig. 5.8: The amplitude spectrum, C_l, of the lift coefficient, C_l (UB case, $S = 0.49$)
Fig. 5.9: Strouhal number St as a function of wake parameter S (Source of experimental data • and ▲: Chen & Jirka 1995)
Fig. 6.1: Schematic diagram of wake computation configuration by: (a) method 1 (with cylinder) and (b) method 2 (without cylinder).
Fig. 6.2 Streamlines of CY14 over a period (to be cont’d)
Fig. 6.2 Streamlines of CY14 over a period (to be cont’d)
Fig. 6.2 Streamlines of CY14 over a period
Fig. 6.3 Streamlines of CY43 over a period (to be cont’d)
Fig. 6.3 Streamlines of CY43 over a period (to be cont'd)
(a) With cylinder
(vii) $t=7T/8$

(b) Without cylinder
(vii) $t=7T/8$

(viii) $t=T$

Fig. 6.3 Streamlines of CY43 over a period
Fig. 6.5: Streamlines of CY14 simulated by (a) method 2 ($v'=0$); (b) method 3 ($v'=0.2U_0\sin(2\pi f/2x)$); (c) method 4 ($v'=0.1U_0\sin(2\pi f/2x)$) and (d) method 3 ($v'=0.01U_0\sin(2\pi f/2x)$).
Fig. 6.6: Wake instability evolution of CY43 (unsteady bubble) in streamwise direction. Instability boundary curves were obtained from Socolofsky et al. (2003) ("o" marks the starting point at wall of cylinder)

Fig. 6.7: Wake instability evolution of CY14 (vortex street) in streamwise direction. Instability boundary curves were obtained from Socolofsky et al. (2003) ("o" marks the starting point at wall of cylinder)
Fig. 6.8: Wake instability evolution of no cylinder case of CY43 (unsteady bobble) in streamwise direction. Instability boundary curves were obtained from Socolofsky et al. (2003) ("o" marks the starting point at wall of cylinder)

Fig. 6.9: Wake instability evolution of no cylinder case of CY14 (unsteady bobble) in streamwise direction. Instability boundary curves were obtained from Socolofsky et al. (2003) ("o" marks the starting point at wall of cylinder)
Fig. 6.13: Plot of normalized spectrum amplitudes against Stability parameter