Figure 2.2. Schematics of the single debonding process
Figure 4.1. A TEM micrograph of the CCR nanoparticles.
Figure 4.2. A SEM micrograph of the BT3 particles.
Figure 4.3. Schematic drawings showing the stearic acid coating on \textit{nano-}CaCO$_3$ surface. (a) the ideal condition and (b) the possible conditions.
Figure 4.4. TGA data of CaCO$_3$ particles.
Figure 4.7. SEM micrographs of the PP/BT3 composite. The flow direction of injection processing is shown by the arrows.
Figure 4.8. A TEM micrograph of the PP/CCR15 nanocomposite.
Figure 4.9. TEM micrographs of the stained PP/CCR15 nanocomposite. (a) low magnification and (b) high magnification.
Figure 6.1. Development of relative crystallinity with time for isothermal crystallization of PP and its composites at 128 °C.
Figure 5.2. Half time of crystallization ($t_{1/2}$) of PP and its composites at different crystallization temperatures.
Figure 5.3. Morphology of crystallized PP and its composites after the completion of crystallization at 128 °C. (a) PP, (b) PP/BT3 and (c) PP/CCR15.
Figure 5.4. Development of relative crystallinity with time for isothermal crystallization for PP and PP/CaCO₃ nanocomposites at 128 °C. (b) is the enlarged plot of the rectangular parts in (a).
Figure 5.6. Half time of crystallization ($t_{1/2}$) of PP and PP/CaCO$_3$ nanocomposites as a function of crystallization temperature.
Figure 5.7. Plot of $\log[-\ln(1-X(t))]$ versus $\log t$ for isothermal crystallization of PP and its nanocomposites at 128 °C.
Figure 5.8. Morphology of the PP and PP/\(\text{CaCO}_3 \) nanocomposites crystallized at 128 °C. (a) PP, (b) PP/CCR01 and (c) PP/CCR10, (d) PP/CCR15.
Figure 5.10. TEM micrographs of the PP/CCR nanocomposites. (a) PP/CCR10 and (b) PP/CCR15.
Figure 6.1 A TEM micrograph of stress-whitened PP/CCR15 nanocomposite (sample A). The loading direction is shown by the black arrow, and the deformation positions are pointed out by the white arrows.
Figure 6.2. TEM micrographs of the necked PP/CCR7 nanocomposites (sample B). The loading direction is shown by the arrows.
Figure 6.3. TEM micrographs of the large necked PP/CCR15 nanocomposite (sample C). The loading direction is shown by the arrows.
Figure 6.4. SEM micrographs of the necked PP/CCR15 sample. The loading direction is shown by the arrows. (b) is a higher magnification micrograph of (a).
Figure 6.5. SEM micrographs of the necked PP/BT3 sample. The loading direction is shown by the arrows.
Figure 6.6. Schematic diagram showing the microdeformation mechanisms.
Figure 6.7. Yield stress of neat PP as a function of strain rate at different temperatures.

Figure 6.8. Yield stress of the PP/CCR05 nanocomposite as a function of strain rate at different temperatures.
Figure 6.9. Yield stress of the PP/CCR10 nanocomposite as a function of strain rate at different temperatures.

Figure 6.10. Yield stress of the PP/CCR15 nanocomposite as a function of strain rate at different temperatures.
Figure 6.11. The activation energy of neat PP and PP nanocomposites.
Figure 6.13. Schematic drawing of the cubic packing of nano-CaCO$_3$ in PP matrix.
Figure 6.14. Yield stress of the PP/BT3 composite as a function of strain rate at different temperatures.
Figure 6.15. The activation volume of neat PP and PP composites.
Figure 6.16. The loss tangent of PP and its composites tested by DMA. (b) is the enlarged plot of the rectangular parts in (a).
Figure 6.17. The T_g values of PP and its composites tested by DMA.
Figure 6.18. The T_g values of PP and its nanocomposites tested by DMA.
Figure 7.1. A SEM micrograph of talc particles.

Figure 7.2. Schematic drawing of the talc structure.
Figure 7.4. Negative mass spectra of talc particles.
Figure 7.5. Positive mass spectra of talc particles.
Figure 7.6. SEM micrographs of PP/talc composites. (a) 5 wt%,(b) 10 wt%,
and (c) 15 wt%. The arrows show the flow direction.
Figure 7.7. SEM micrograph of PP/Talc15. (a) skin section and (b) core section. The flowing direction is normal to the fracture surface and (c) The schematic drawing of the skin-core structure.
Figure 7.8. TEM micrographs of PP/Talc15.

Figure 7.9. TEM micrographs of the stained PP/Talc15 composites.
Figure 7.10. Half time of crystallization ($t_{1/2}$) of PP and PP/talc composites at different crystallization temperatures.
Figure 7.12. Yield stress of PP/Talc05 as a function of strain rate at different temperatures.

Figure 7.13. Yield stress of PP/Talc10 as a function of strain rate at different temperatures.
Figure 7.14. Yield stress of PP/Talc1 as a function of strain rate at different temperatures.
Figure 7.15. The activation energy of neat PP and PP/talc composites.

Figure 7.16. The activation volume of neat PP and PP/talc composites.
Figure 7.17. A TEM micrograph of the stress-whitened PP/Talc15 composite (sample A). The loading direction is shown by the arrow.

Figure 7.18. TEM micrographs of the just-necked PP/Talc15 composite (sample B). The loading direction is shown by the arrows.
Figure 7.19. TEM micrographs of the necked PP/Talc15 composite (sample C). The loading direction is shown by the arrows.
Figure 7.20. Schematic diagram showing the microdeformation mechanisms of PP/talc composites.
Figure 7.21. DSC curves of PP and its composites. (a) melting and (b) crystallization.
Figure 7.22. Half time of crystallization ($t_{1/2}$) of PP and its composites at different crystallization temperatures.
Figure 7.25. Plot of the activation volume as a function of particle concentration at 40 °C.