Fig. 2.1 The first bipolar transistor (point-contact transistor) invented at Bell Laboratories in 1947. (Photo courtesy of Bell Laboratories)
Fig. 2.2 The die photo of a VLSI chip by IBM PowerPC. (Photo courtesy of IBM)
Fig. 3.1 The spiral inductor design ($L=6.2\text{nH}$) with ground-signal-ground pads.
Fig. 3.4 The Smith Chart representation of the on-chip inductor and capacitor.
Fig. 3.5 The higher self-resonance and Q-factor of the SOS on-chip planar spiral inductor ($L = 6\text{nH}$).
Fig. 3.6 The higher self-resonance and Q-factor of the SOS on-chip PIP capacitor ($C \approx 0.2$ pF).
Fig. 4.1 The layout of a SOS MOSFET for high frequency measurements with microwave GSG (ground-signal-ground) probes.
Fig. 4.7 The optimum input reflection coefficient Γ_{opt} and the ease of impedance matching for minimum noise.
Fig. 4.9 The MAG of SOS MOSFET increases very slightly with increasing biasing current.
Fig. 5.3 Small signal amplification (U: unilateral power gain, MSG: Maximum Stable Gain, MAG: Maximum Available Gain) of SOS MOSFET.

Fig. 5.4 The cut-off frequency f_t and maximum oscillation frequency f_{max} of the SOS MOSFET at various drain bias.
Fig. 6.1 The layout design of the compact waffle MOSFET (a) Manhattan type; (b) non-Manhattan type; (c), (d) are zoomed center parts of (a) and (b) respectively.
Fig. 6.3 The $I_{DS} - V_{DS}$ characteristics of the waffle MOSFET compared with the conventional multi-finger type.
Fig. 6.4 The waffle MOSFET gives slightly higher transconductance (g_m/W) than that of the multifinger MOSFET because of the additional current conducting through the cross regions.

Fig. 6.5 The waffle MOSFET gives the same subthreshold characteristics as compared with the conventional multi-finger MOSFET.
Fig. 6.6 The waffle MOSFET shows a higher power gain and maximum oscillation frequency (f_{max}) than those of the multifinger MOSFET in small signal amplification ($W_{\text{Manh}} = 206\,\mu\text{m}; W_{\text{non-Manh}} = 210\,\mu\text{m}; W_{\text{finger}} = 230\,\mu\text{m}$).
Fig. 6.8 Comparison of the small signal gain of the waffle MOSFET with the conventional multi-finger type at various supply voltage V_{DD}.

$V_{GS} = 0.65 V$, $I_{DS} \approx 1.0 mA$
$f = 3 GHz$

$W_{Manh} = 206 \mu m; W_{non-Manh} = 210 \mu m$;
Fig. 6.11 The die photo of the RF passive mixer fabricated on a 0.35-μm CMOS process.
Fig. 7.1 The future technology direction of system-on-chip: monolithic integration of both mixed-signal (digital and analog) integrated circuits and optoelectronic circuits on the same substrate. (taken from Cavendish Laboratory, available at http://www.sp.phy.cam.ac.uk/~dp109/SiGeBackground.html)