Fig. 2 Frequency domain representation of the down-conversion and the relationship between RF, image, LO, and IF signals.

Fig. 3 Frequency domain representation of the channel selection.
Fig. 4 Profile of interference signals
carrier

\[\text{dBc/Hz} \]

noise power within 1Hz

1Hz

\[\Delta f \]

Fig. 5 Frequency domain representation of phase noise
Fig. 6 Effect of phase noise of LO signal
Fig. 7 Phase noise envelope for local oscillator signal in GSM receiver
Fig. 9 Effect of spurs of LO signal
Fig. 10 Spur envelope for local oscillator signal in GSM receiver
To design a fractional-N PLL synthesizer, three parameters, including reference frequency, loop bandwidth, number of orders of the sigma-delta modulator, have to be
Fig. 20 Detailed system diagram of this design
Fig. 22 Another view of coupled LC oscillators
Fig. 25 Cross section of the parasitic PN junction varactor
Fig. 27 Graphical representations of the generalized criterion for oscillation a) based on loop gain b) based on negative conductance
Fig. 29 gdo for different negative conductances
Fig. 30 Transconductance vs input voltage of transistors of different W/L ratios
Fig. 31 a) Proposed LC oscillator and b) the corresponding G_m
Fig. 32 Gdo of the proposed LC oscillator

Fig. 33 Impulse sensitivity function

Fig. 34 Phase contribution of the proposed oscillator
Fig. 40 Schematic diagram of the current steering charge-pump (pump-down current branch only) and the switch capacitor driving stage.
Fig. 44 gain and offset adjustments for the switchable-capacitor-array control
Fig. 45 System diagram of the multi-modulus prescalar
Fig. 52 Schematic of the pseudo-NMOS a) inverter, b) OR gate, c) wired-AND gate
Fig. 57 Schematic diagram of the state machine of the phase select
Fig. 60 Schematic of the accumulator

Fig. 61 Evolution of the digital accumulator a) System diagram of a digital adder b-d) Different views of system diagram of a digital accumulator
Fig. 64 Output of a first-order modulator with a half-range input

Fig. 65 Output spectrums of a sigma-delta modulator a) random input b) DC or periodic input c) DC or periodic input with dither
Fig. 66 Schematic diagram of the pseudo random sequence generator
A pair of identical LC oscillators

Coupling transistors

Fig. 69 Schematic of coupled LC oscillators with quadrature outputs
Fig. 72 (a) Single-ended output voltage of LC oscillator; (b) Common source voltage; (c) Current flow into gm cell. (1) without capacitor (2) with capacitor
Fig. 74 (a) Output voltage of LC oscillator; (b) Common source voltage; (c) Current flow into gm cell.
(1) without capacitor or common source node connection (2) with capacitor (3) with connection
Fig. 75 Another view of a matched coupled-LC oscillators

Fig. 76 Amplitudes and currents of the two mismatched oscillators: T1: period when differential output is large in oscillator A; T2: period when differential output is large in oscillator B
Fig. 81 Different views of the coupled-LC oscillators
Fig. 82 Floorplan of the Gm cell transistors (matched pairs in dotted rectangles) and the corresponding schematic.
Fig. 84 Layouts of oscillators a) four inductors with rotational symmetry b) two pairs of inductors in the two oscillators with x-symmetry
Fig. 85 Other alternative arrangement of inductors and the corresponding layout
Fig. 87 Layout of switchable-capacitor-array
Fig. 88 Layout of half of the whole switchable-capacitor array
Fig. 89 Layout of P+ Nwell varactor
Fig. 92 Layout of the inductor

Fig. 93 Zoomed view of the interconnection of two layers of the inductor
Fig. 94 Layout of the voltage-controlled oscillator

Fig. 95 Schematic of the voltage-controlled oscillator
Fig. 96 Layout of the frequency synthesizer

Fig. 97 Block diagram of the frequency synthesizer
Fig. 98 Die photo of the frequency synthesizer and the test structures
Fig. 99 Testing setup for the passive component measurement
Fig. 103 Testing structure of the spiral inductor
Fig. 109 Testing structure of the varactor
Fig. 113 Testing structure of the N-well substrate parasitic diode
Fig. 117 Testing structure of the switchable-capacitor array
Fig. 121 Testing structure of the linear capacitor of the switchable-capacitor array
Fig. 125 Testing setup for VCO and synthesizer measurements
Fig. 127 Printed circuit board for VCO and synthesizer measurements
Fig. 130 Frequency vs. tuning voltage of the voltage-controlled oscillator
Fig. 131 Gain of voltage-controlled oscillator vs. tuning voltage
Fig. 133 Tuning voltage vs. channel number with different gain adjustments
Fig. 134 Tuning voltage of the VCO vs. channel number
Fig. 136 Phase noise of the frequency synthesizer